Abstract
This paper begins the study of relations between Riemannian geometry and global properties of contact structures on 3-manifolds. In particular we prove an analog of the sphere theorem from Riemannian geometry in the setting of contact geometry. Specifically, if a given three dimensional contact manifold (M,ξ) admits a complete compatible Riemannian metric of positive 4/9-pinched curvature then the underlying contact structure ξ is tight; in particular, the contact structure pulled back to the universal cover is the standard contact structure on S 3. We also describe geometric conditions in dimension three for ξ to be universally tight in the nonpositive curvature setting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Inventiones mathematicae
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.