Abstract

We study generalized branching random walks on the real line R that allow time dependence and local dependence between siblings. Specifically, starting from one particle at time 0, the system evolves such that each particle lives for one unit amount of time, gives birth independently to a random number of offspring according to some branching law, and dies. The offspring from a single particle are assumed to move to new locations on R according to some joint displacement distribution; the branching laws and displacement distributions depend on time. At time n, Fn(·) is used to denote the distribution function of the position of the rightmost particle in generation n. Under appropriate tail assumptions on the branching laws and offspring displacement distributions, we prove that Fn(· - Med(Fn)) is tight in n, where Med(Fn) is the median of Fn. The main part of the argument is to demonstrate the exponential decay of the right tail 1 - Fn(· - Med(Fn)).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.