Abstract

This paper addresses the problem of worst-case timing analysis in wormhole Networks-On-Chip (NoCs). We consider our previous work [5] for computing maximum delay bounds using Network Calculus, called the Buffer-Aware Worst-case Timing Analysis (BATA). The latter allows the computation of delay bounds for a large panel of wormhole NoCs, e.g., handling priority-sharing, Virtual Channel Sharing and buffer backpressure. In this paper, we provide further insights into the tightness and computation issues of the worst-case delay bounds yielded by BATA. Our assessment shows that the gap between the computed delay bounds and the worst-case simulation results is reasonably small (70% tighness on average). Furthermore, BATA provides good delay bounds for medium-scale configurations within less than one hour. Finally, we evaluate the yielded improvements with BATA for a realistic use-case against a recent state-of-the-art approach. This evaluation shows the applicability of BATA under more general assumptions and the impact of such a feature on the tightness and computation time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.