Abstract

The polyanionic phosphodiester backbone of nucleic acids contributes to high nuclease sensitivity and low cellular uptake and is therefore a major obstacle to the biological application of native oligonucleotides. Backbone modifications, particularly charge alterations is a proven strategy to provide artificial oligonucleotides with improved properties. Here, we describe the synthesis of a new type of oligonucleotide analogues consisting of a morpholino and a ribo- or deoxyribonucleoside in which the 5'-amino group of the nucleoside unit provides the nitrogen of the morpholine ring. The synthetic protocol is compatible with trityl and dimethoxytrityl protecting groups and azido functionality, and was extended to the synthesis of higher oligomers. The chimeras are positively charged in aqueous medium, due to the N-alkylated tertiary amine structure of the morpholino unit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.