Abstract

Gossip and in particular network coded algebraic gossip have recently attracted attention as a fast, bandwidth-efficient, reliable and distributed way to broadcast or multicast multiple messages. While the algorithms are simple, involved queuing approaches are used to study their performance. The most recent result in this direction shows that uniform algebraic gossip disseminates k messages in O(Δ(D + k + log n)) rounds where D is the diameter, n the size of the network and Δ the maximum degree. In this paper we give a simpler, short and self-contained proof for this worst-case guarantee. Our approach also allows to reduce the quadratic Δ D term to min{3n, Δ D}. We furthermore show that a simple round robin routing scheme also achieves min{3n, Δ D} + Δ k rounds, eliminating both randomization and coding. Lastly, we combine a recent non-uniform gossip algorithm with a simple routing scheme to get a O(D + k + log^{O(1)}) gossip information dissemination algorithm. This is order optimal as long as D and k are not both polylogarithmically small.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.