Abstract

Bayesian reinforcement learning (BRL) provides a principled framework for optimal exploration-exploitation tradeoff in reinforcement learning. We focus on model based BRL, which involves a compact formulation of the optimal tradeoff from the Bayesian perspective. However, it still remains a computational challenge to compute the Bayes-optimal policy. In this paper, we propose a novel approach to compute tighter value function bounds of the Bayes-optimal value function, which is crucial for improving the performance of many model-based BRL algorithms. We then present how our bounds can be integrated into real-time AO* heuristic search, and provide a theoretical analysis on the impact of improved bounds on the search efficiency. We also provide empirical results on standard BRL domains that demonstrate the effectiveness of our approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.