Abstract

We study two-stage stochastic mixed integer programs (TSS-MIPs) with integer variables in the second stage. We show that under suitable conditions, the second stage MIPs can be convexified by adding parametric cuts a priori. As special cases, we extend the results of Miller and Wolsey [Math. Program., 98 (2003), pp. 73--88] to TSS-MIPs. Furthermore, we consider second stage programs that are generalizations of the well-known mixing (and continuous mixing) set, or certain piecewise-linear convex objective integer programs. These results allow us to relax the integrality restrictions on the second stage integer variables without effecting the integrality of the optimal solution of the TSS-MIP. We also use four variants of the two-stage stochastic capacitated lot-sizing problems as test problems for computational experiments and present tight second stage formulations for these problems. Our computational results show that adding parametric inequalities that a priori convexify the second stage formulation si...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.