Abstract

Tight junctions (TJs) are highly specialized membrane domains involved in many important cellular processes such as the regulation of the passage of ions and macromolecules across the paracellular space and the establishment of cell polarity in epithelial cells. Over the past few years there has been increasing evidence that different components of the TJs can be hijacked by viruses in order to complete their infectious cycle. Viruses from at least nine different families of DNA and RNA viruses have been reported to use TJ proteins in their benefit. For example, TJ proteins such as JAM-A or some members of the claudin family of proteins are used by members of the Reoviridae family and hepatitis C virus as receptors or co-receptors during their entry into their host cells. Reovirus, in addition, takes advantage of the TJ protein Junction Adhesion Molecule-A (JAM-A) to achieve its hematogenous dissemination. Some other viruses are capable of regulating the expression or the localization of TJ proteins to induce cell transformation or to improve the efficiency of their exit process. This review encompasses the importance of TJs for viral entry, replication, dissemination, and egress, and makes a clear statement of the importance of studying these proteins to gain a better understanding of the replication strategies used by viruses that infect epithelial and/or endothelial cells.

Highlights

  • Viruses, as obliged intracellular parasites, need to take advantage of a wide variety of cellular processes to successfully produce infectious progeny

  • It is worth mentioning that the endocytosis of coxsackie B viruses is coupled with the internalization of another tight junctions (TJs) protein, occludin

  • Several studies have clearly demonstrated the importance of Junction Adhesion Molecule-A (JAM-A) as a cellular receptor for reovirus [54]

Read more

Summary

Introduction

As obliged intracellular parasites, need to take advantage of a wide variety of cellular processes to successfully produce infectious progeny. Different viruses can exploit the same cellular process, and the biomolecules related to it, in many different ways. In recent years, increasing evidence of the importance of tight junctions (TJs) for the infection of several viruses has arisen, making it clear that studying the role of the components of this cellular pathway during viral replication is important to achieve a better understanding of how viruses make use of the cellular machinery in order to complete their infectious cycle

Tight Junction Structure and Function
Viruses Open the Gate
Tight Junctions
It Is Not All about the Entry
Modification of TJs for Viral Egress

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.