Abstract

Metastatic colon cancer remains incurable despite improvements in survival outcomes. New therapies based on the discovery of colon cancer genomic subsets could improve outcomes. Colon cancers from genomic studies with publicly available data were examined to define the expression and regulation of the major tight junction proteins claudins and occludin in genomic groups. Putative regulations of the promoters of tight junction genes by colon-cancer-deregulated pathways were evaluated in silico. The effect of claudin mRNA expression levels on survival of colon cancer patients was examined. Common mutations in colon-cancer-related genes showed variable prevalence in genomically identified groups. Claudin genes were rarely mutated in colon cancer patients. Genomically identified groups of colon cancer displayed distinct regulation of claudins and occludin at the mRNA level. Claudin gene promoters possessed clustered sites of binding sequences for transcription factors TCF4 and SMADs, consistent with a key regulatory role of the WNT and TGFβ pathways in their expression. Although an effect of claudin mRNA expression on survival of colon cancer patients as a whole was not prominent, survival of genomic subsets was significantly influenced by claudin mRNA expression. mRNA expression of the main tight junction genes showed differential regulation in various genomically defined subgroups of colon cancer. These data pinpoint a distinct role of claudins and pathways that regulate them in these subgroups and suggest that subgroups of colon cancer should be considered in future efforts to therapeutically target claudins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.