Abstract

The traditional PPP/INS system is still not used as widely as the DGNSS/INS system in precise applications, although no local reference stations are required. The main reason that prevents its use is that the traditional PPP/INS system is based on the float ambiguity solution, which leads to long convergence period and unstable positioning accuracy. We propose a tightly coupled ambiguity-fixed PPP/INS integration. First, the derivation of the observation model of the ambiguity-fixed PPP at the single-difference level using integer phase clock products from Center National d'Etudes Spatiales is presented in detail. Then the inertial navigation system model is presented. With these two models, the tightly coupled model of the PPP/INS integration is established. Finally, two carborne tests are used to evaluate the performance of the tight integration of ambiguity-fixed PPP and INS. Experimental results indicate that the proposed ambiguity-fixed PPP/INS integration is able to reach stable centimeter-level positioning after the first-fixed solution and its overall performance is comparable to that of the DGNSS/INS integration, and rapid re-convergence and re-fixing are achievable after a short period of GNSS outage for the PPP/INS integration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.