Abstract

Multilabel problems are of fundamental importance in computer vision and image analysis. Yet, finding global minima of the associated energies is typically a hard computational challenge. Recently, progress has been made by reverting to spatially continuous formulations of respective problems and solving the arising convex relaxation globally. In practice this leads to solutions which are either optimal or within an a posteriori bound of the optimum. Unfortunately, in previous methods, both run time and memory requirements scale linearly in the total number of labels, making these methods very inefficient and often not applicable to problems with higher dimensional label spaces. In this paper, we propose a reduction technique for the case that the label space is a continuous product space and the regularizer is separable, i.e., a sum of regularizers for each dimension of the label space. In typical real-world labeling problems, the resulting convex relaxation requires orders of magnitude less memory and c...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.