Abstract
The chromatic edge stability index esχ′(G) of a graph G is the minimum number of edges whose removal results in a graph with smaller chromatic index. We give best-possible upper bounds on esχ′(G) in terms of the number of vertices of degree Δ(G) (if G is Class 2), and the numbers of vertices of degree Δ(G) and Δ(G)−1 (if G is Class 1). If G is bipartite we give an exact expression for esχ′(G) involving the maximum size of a matching in the subgraph induced by the vertices of degree Δ(G). Finally, we consider whether a minimum mitigating set, that is a set of size esχ′(G) whose removal reduces the chromatic index, has the property that every edge meets a vertex of degree at least Δ(G)−1; we prove that this is true for some minimum mitigating set of G, but not necessarily for every minimum mitigating set of G.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.