Abstract

In flow shop scheduling there are m machines and n jobs, such that every job has to be processed on the machines in the fixed order 1,…,m. In the permutation flow shop problem, it is also required that each machine process the set of all jobs in the same order. Formally, given n jobs along with their processing times on each machine, the goal is to compute a single permutation of the jobs σ: [n] → [n] that minimizes the maximum job completion time (makespan) of the schedule resulting from σ. The previously best known approximation guarantee for this problem was O((m log m)1/2) [Sviridenko, M. 2004. A note on permutation flow shop problem. Ann. Oper. Res. 129 247–252]. In this paper, we obtain an improved O(min{m1/2,n1/2}) approximation algorithm for the permutation flow shop scheduling problem, by finding a connection between the scheduling problem and the longest increasing subsequence problem. Our approximation ratio is relative to the lower bounds of maximum job length and maximum machine load, and is the best possible such result. This also resolves an open question from Potts et al. [Potts, C., D. Shmoys, D. Williamson. 1991. Permutation vs. nonpermutation flow shop schedules. Oper. Res. Lett. 10 281–284], by algorithmically matching the gap between permutation and nonpermutation schedules. We also consider the weighted completion time objective for the permutation flow shop scheduling problem. Using a natural linear programming relaxation and our algorithm for the makespan objective, we obtain an O(min{m1/2,n1/2}) approximation algorithm for minimizing the total weighted completion time, improving on the previously best known guarantee of εm for any constant ε > 0 [Smutnicki, C. 1998. Some results of the worst-case analysis for flow shop scheduling. Eur. J. Oper. Res. 109 66–87]. We give a matching lower bound on the integrality gap of our linear programming relaxation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.