Abstract

This paper introduces the notion of distributed verification without preprocessing. It focuses on the Minimum-weight Spanning Tree (MST) verification problem and establishes tight upper and lower bounds for the time and message complexities of this problem. Specifically, we provide an MST verification algorithm that achieves simultaneously O(m) messages and O($\sqrt$ n+D) time, where m is the number of edges in the given graph G, n is the number of nodes, and D is G's diameter. On the other hand, we show that any MST verification algorithm must send {\Omega}(m) messages and incur {\Omega}($\sqrt$ n + D) time in worst case. Our upper bound result appears to indicate that the verification of an MST may be easier than its construction, since for MST construction, both lower bounds of {\Omega}(m) messages and {\Omega}($\sqrt$ n+D time hold, but at the moment there is no known distributed algorithm that constructs an MST and achieves simultaneously O(m) messages and O($\sqrt$ n + D) time. Specifically, the best known time-optimal algorithm (using O($\sqrt$ n + D) time) requires O(m + n 3/2) messages, and the best known message-optimal algorithm (using O(m) messages) requires O(n) time. On the other hand, our lower bound results indicate that the verification of an MST is not significantly easier than its construction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.