Abstract

Agreeing on a common value among a set of agents is a fundamental problem in distributed computing, which occurs in several variants: In contrast to exact consensus, approximate variants are studied in systems where exact agreement is not possible or required, e.g., in human-made distributed control systems and in the analysis of natural distributed systems, such as bird flocking and opinion dynamics. We study the time complexity of two classical agreement problems: non-terminating asymptotic consensus and terminating approximate consensus. Asymptotic consensus, requires agents to repeatedly set their outputs such that the outputs converge to a common value within the convex hull of initial values; approximate consensus requires agents to eventually stop setting their outputs, which must then lie within a predefined distance of each other. We prove tight lower bounds on the contraction ratios of asymptotic consensus algorithms subject to oblivious message adversaries, from which we deduce bounds on the time complexity of approximate consensus algorithms. In particular, the obtained bounds show optimality of asymptotic and approximate consensus algorithms presented by Charron-Bost et al. (ICALP’16) for certain systems, including the strongest oblivious message adversary in which asymptotic and approximate consensus are solvable. As a corollary we also obtain asymptotically tight bounds for asymptotic consensus in the classical asynchronous model with crashes. Central to the lower-bound proofs is an extended notion of valency, the set of reachable limits of an asymptotic consensus algorithm starting from a given configuration. We further relate topological properties of valencies to the solvability of exact consensus, shedding some light on the relation of these three fundamental problems in dynamic networks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call