Abstract

We present here a tight-binding-like modelling of two-dimensional (2D) photonic crystals (PCs). Adopted from solid-state physics, the concept of generalized Wannier functions is used to construct a localized state basis that allows a parameter-free ab initio study of defects in PCs. We demonstrate here for a 2D triangular lattice of dielectric rods in air, the existence of this localized basis and the possibility to study large scale complex dielectric structures deviating from periodicity. Specific numerical simulations on a split waveguide embedded in this triangular lattice are performed, and they demonstrate the superiority of this method over plane wave based techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.