Abstract

Glucose consumption and therefore methylglyoxal production of human erythrocytes increase significantly upon infection with malaria parasites. The glyoxalase systems of the host-parasite unit cope with this metabolic challenge by catalyzing the removal of harmful methylglyoxal. Thus, glyoxalase 1 from the malaria parasite Plasmodium falciparum (PfGlo1) could be a promising drug target. However, the enzyme has two different active sites and their simultaneous inactivation is considered challenging. Here, we describe the inactivation of PfGlo1 by two glyoxalase-specific tight-binding inhibitors with nanomolar K(i)(app) values and noncompetitive inhibition patterns. The inhibitors do not discriminate between the high-affinity and the high-activity conformations of PfGlo1, but seem to stabilize or trigger a conformational change in analogy with the substrate. In summary, we have characterized the most potent inhibitors of PfGlo1 known to date.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.