Abstract

This paper extends work done to date on quantum computation by association of potentials with different types of steps. Quantum Turing machine Hamiltonians, generalized to include potentials, correspond to sums over tight binding Hamiltonians each with a different potential distribution. Which distribution applies is determined by the initial state. An example, which enumerates the integers in succession as binary strings, is analyzed. It is seen that for some initial states, the potential distributions have quasicrystalline properties and are similar to a substitution sequence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.