Abstract

Starting with empirical tight-binding band structures, the branch-point (BP) energies and resulting valence band offsets for the zincblende phase of InN, GaN, and AlN are calculated from their k-averaged midgap energy. Furthermore, the directional dependence of the BPs of GaN and AlN is discussed using the Green's function method of Tersoff. We then show how to obtain the BPs for binary semiconductor alloys within a band-diagonal representation of the coherent potential approximation and apply this method to cubic AlGaN alloys. The resulting band offsets show good agreement to available experimental and theoretical data from the literature. Our results can be used to determine the band alignment in isovalent heterostructures involving pure cubic III-nitrides or AlGaN alloys for arbitrary concentrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.