Abstract

We analyze the effect of tensional strain in the electronic structure of graphene. In the absence of electron-electron interactions, within linear elasticity theory, and a tight-binding approach, we observe that strain can generate a bulk spectral gap. However, this gap is critical, requiring threshold deformations in excess of 20% and only along preferred directions with respect to the underlying lattice. The gapless Dirac spectrum is robust for small and moderate deformations and the gap appears as a consequence of the merging of the two inequivalent Dirac points only under considerable deformations of the lattice. We discuss how strain-induced anisotropy and local deformations can be used as a means to affect transport characteristics and pinch off current flow in graphene devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call