Abstract

The non-ORC protein, TIF1, recognizes sequences in the Tetrahymena thermophila ribosomal DNA (rDNA) minichromosome that are required for origin activation. We show here that TIF1 represses rDNA origin firing, but is required for proper macronuclear S phase progression and division. TIF1 mutants exhibit an elongated macronuclear S phase and diminished rate of DNA replication. Despite this, replication of the rDNA minichromosome initiates precociously. Because rDNA copy number is unaffected in the polyploid macronucleus, mechanisms that prevent reinitiation appear intact. Although mutants exit macronuclear S with a wild-type DNA content, division of the amitotic macronucleus is both delayed and abnormal. Nuclear defects are also observed in the diploid mitotic micronucleus, as TIF1 mutants lose a significant fraction of their micronuclear DNA. Hence, TIF1 is required for the propagation and subsequent transmission of germline chromosomes. The broad phenotypes associated with a TIF1-deficiency suggest that this origin binding protein is required globally for the proper execution and/or monitoring of key chromosomal events during S phase and possibly at later stages of the cell cycle. We propose that micro- and macronuclear defects result from exiting the respective nuclear S phases with physically compromised chromosomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.