Abstract

We present a joint sub-channel and power allocation framework for downlink transmission in an orthogonal frequency-division multiple access (OFDMA)-based cellular network composed of a macrocell overlaid by small cells. In this framework, the resource allocation (RA) problems for both the macrocell and small cells are formulated as optimization problems. For the macrocell, we formulate an RA problem that is aware of the existence of the small cell tier. In this problem, the macrocell performs RA to satisfy the data rate requirements of macro user equipments (MUEs) while maximizing the tolerable interference from the small cell tier on its allocated sub-channels. Although the RA problem for the macrocell is shown to be a mixed integer nonlinear problem (MINLP), we prove that the macrocell can solve another alternate optimization problem that will yield the optimal solution with reduced complexity. For the small cells, following the same idea of tier-awareness, we formulate an optimization problem that accounts for both RA and admission control (AC) and aims at maximizing the number of admitted users while simultaneously minimizing the consumed bandwidth. Similar to the macrocell optimization problem, the small cell problem is shown to be an MINLP. We obtain a sub-optimal solution to the MINLP problem relying on convex relaxation. In addition, we employ the dual decomposition technique to have a distributed solution for the small cell tier. Numerical results confirm the performance gains of our proposed RA formulation for the macrocell over the traditional resource allocation based on minimizing the transmission power. Besides, it is shown that the formulation based on convex relaxation yields a similar behavior to the MINLP formulation. Also, the distributed solution converges to the same solution obtained by solving the corresponding convex optimization problem in a centralized fashion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.