Abstract
Due to its high efficiency and superior durability the diesel engine is again becoming a prime candidate for future light-duty vehicle applications within the United States. While in Europe the overall diesel share exceeds 40%, the current diesel share in the U.S. is 1%. Despite the current situation and the very stringent Tier 2 emission standards, efforts are being made to introduce the diesel engine back into the U.S. market. In order to succeed, these vehicles have to comply with emissions standards over a 120,000 miles distance while maintaining their excellent fuel economy. The availability of technologies such as high-pressure, common-rail fuel systems, low-sulfur diesel fuel, NO{sub x} adsorber catalysts (NAC), and diesel particle filters (DPFs) allow the development of powertrain systems that have the potential to comply with the light-duty Tier 2 emission requirements. In support of this, the U.S. Department of Energy (DOE) has engaged in several test projects under the Advanced Petroleum Based Fuels - Diesel Emission Controls (APBF-DEC) activity. The primary technology being addressed by these projects are the sulfur tolerance and durability of the NAC/DPF system. The project investigated the performance of the emission control system and system desulphurization effects on regulated and unregulated emissions.more » Emissions measurements were conducted over the Federal Test Procedure (FTP), Supplemental Federal Test Procedure (SFTP), and the Highway Fuel Economy Test (HFET). Testing was conducted after the accumulation of 150 hours of engine operation calculated to be the equivalent of approximately 8,200 miles. For these evaluations three out of six of the FTP test cycles were within the 50,000-mile Tier 2 bin 5 emission standards (0.05 g/mi NO{sub x} and 0.01 g/mi PM). Emissions over the SC03 portion of the SFTP were within the 4,000-mile SFTP standards. The emission of NO{sub x}+NMHC exceeded the 4,000-mile standard over the US06 portion of the SFTP. Testing was also conducted after the accumulation of 1,000 hours of engine operation calculated to be the equivalent of approximately 50,000 miles. Recalibrated driveability maps resulted in more repeatable NOs{sub x} emissions from cycle to cycle. The NO{sub x} level was below the Tier 2 emission limits for 50,000 and 120,000 miles. NMHC emissions were found at a level outside the limit for 120,000 miles.« less
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.