Abstract

Electroencephalogram (EEG) based seizure subtype classification is very important in clinical diagnostics. However, manual seizure subtype classification is expensive and time-consuming, whereas automatic classification usually needs a large number of labeled samples for model training. This paper proposes an EEGNet-based slim deep neural network, which relieves the labeled data requirement in EEG-based seizure subtype classification. A temporal information enhancement module with sinusoidal encoding is used to augment the first convolution layer of EEGNet. A training strategy for automatic hyper-parameter selection is also proposed. Experiments on the public TUSZ dataset and our own CHSZ dataset with infants and children demonstrated that our proposed TIE-EEGNet outperformed several traditional and deep learning models in cross-subject seizure subtype classification. Additionally, it also achieved the best performance in a challenging transfer learning scenario. Both our code and the CHSZ dataset are publicized.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call