Abstract

Agent-based simulation is a useful approach for the analysis of dynamic population evolution. In this field, the existing models mostly treat the migration behavior as a result of utility maximization, which partially ignores the endogenous mechanisms of human decision making. To simulate such a process, this article proposes a new cognitive architecture called the two-layered integrated decision cycle (TiDEC) which characterizes the individual's decision-making process. Different from the previous ones, the new hybrid architecture incorporates deep neural networks for its perception and implicit knowledge learning. The proposed model is applied in China and U.S. population evolution. To the best of our knowledge, this is the first time that the cognitive computation is used in such a field. Computational experiments using the actual census data indicate that the cognitive model, compared with the traditional utility maximization methods, cannot only reconstruct the historical demographic features but also achieve better prediction of future evolutionary dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.