Abstract

The rotational states of the members in the dwarf planet-satellite systems in the trans-Neptunian region are determined by formation conditions and the tidal interaction between the components. These rotational characteristics serve as prime tracers of their evolution. A number of authors have claimed a very broad range of values for the rotation period for the dwarf planet Eris, ranging from a few hours to a rotation that is (nearly) synchronous with the orbital period (15.8 d) of its satellite, Dysnomia. In this Letter, we present new light curve data for Eris, taken with ∼1–2 m-class ground based telescopes and with the TESS and Gaia space telescopes. The TESS data did not provide a well-defined light curve period, but it could be used to constrain light curve variations to a maximum possible light curve amplitude of Δm ≤ 0.03 mag (1-σ) for P ≤ 24 h periods. Both the combined ground-based data and Gaia measurements unambiguously point to a light curve period equal to the orbital period of Dysnomia, P = 15.8 d, with a light curve amplitude of Δm ≈ 0.03 mag, indicating that the rotation of Eris is tidally locked. Assuming that Dysnomia has a collisional origin, calculations with a simple tidal evolution model show that Dysnomia must be relatively massive (mass ratio of q = 0.01–0.03) and large (radius of Rs ≥ 300 km) to have the potential to slow Eris down to a synchronised rotation. These simulations also indicate that (assuming tidal parameters usually considered for trans-Neptunian objects) the density of Dysnomia should be 1.8–2.4 g cm−3. This is an exceptionally high value among similarly sized trans-Neptunian objects, setting important constraints on their formation conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.