Abstract

Surface sediment samples (0–5 cm) from five tidal marshes along the coast of California, USA were analyzed for organic pollutants to investigate their relationship to land use, current distribution within marshes, and possible sources. Among the study areas, Stege Marsh, located in San Francisco Bay, was the most contaminated. Compared to San Francisco Bay, Stege Marsh had much higher levels of organic contaminants such as PCBs (polychlorinated biphenyls), DDTs, and chlordanes. At reference marshes (Tom’s Point and Walker Creek in Tomales Bay), organic contaminants in sediments were very low. While PAHs (polycyclic aromatic hydrocarbons) were found at all of the study areas (22–13 600 ng g −1), measurable concentrations of PCBs were found only in the sediments from Stege Marsh (80–9940 ng g −1). Combustion related (pyrogenic) high molecular weight PAHs were dominant in sediments from Stege and Carpinteria Marshes, while in sediments from Tom’s Point and Walker Creek petroleum related (petrogenic) low molecular weight PAHs and alkyl-substituted PAHs were much more abundant than pyrogenic PAHs. PCB congener patterns in all of the Stege Marsh samples were the same and revealed that Aroclor 1248 was a predominant source. In all marshes, the sum of DDE and DDD accounted for more than 90% of total DDTs, indicating that DDT has degraded significantly. The ratios of p, p′-DDE to p, p′-DDD in sediments from Stege Marsh provide evidence of possible previous use of technical DDD. Chlordane ratios indicated that chlordanes have degraded slightly. Bis(2-ethylhexyl)phthalate (280–32 000 ng g −1) was the most abundant phthalate. The data indicates that Stege Marsh may be a source of contaminants that continue to be discharged into San Francisco Bay.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call