Abstract

AbstractBoth natural changes (e.g., tidal forcing from the ocean and global sea level rise) and human‐induced changes (e.g., dredging for navigation, sand excavation, and land reclamation) exert considerable influences on the long‐term evolution of tidal regimes in estuaries. Evaluating the impacts of these factors on tidal‐regime shifts is particularly important for the protection and management of estuarine environments. In this study, an analytical approach is developed to investigate the impacts of estuarine morphological alterations (mean water depth and width convergence length) on tidal hydrodynamics in Lingdingyang Bay, Southeast China. Based on the observed tidal levels from two tidal gauging stations along the channel, tidal wave celerity and tidal damping/amplification rate of different tidal constituents are computed using tidal amplitude and phase of tidal constituents extracted from a standard harmonic analysis. We show that the minimum mean water depth for the whole estuary occurred in 2006, whereas a shift in tidal wave celerity for the M2 tide component occurred in 2009. As such, the study period (1990–2016) could be separated into pre‐human (1990–2009) and post‐human (2010–2016) phases. Our results show that the damping/amplification rate and celerity of the M2 tide have increased by 31% (from 7 to 9.2 m−1) and 28% (from 7 to 9 m·s−1) respectively, as a consequence of the substantial impacts of human interventions. The proposed analytical method is subsequently applied to analyse the historical development of tidal hydrodynamics and regime shifts induced by human interventions, thus linking the evolution of estuarine morphology to the dominant tidal hydrodynamics along the channel. The observed tidal regime shift is primarily caused by channel deepening, which substantially enlarged the estuary and reduced effective bottom friction resulting in faster celerity and stronger wave amplification. Our proposed method for quantifying the impacts of human interventions on tidal regime shifts can inform evidence‐based guidelines for evaluating hydraulic responses to future engineering activities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call