Abstract

Long-term hourly data from 35 tide gauge stations, including 15 stations in the Gulf of Finland, were used to examine tidal sea level oscillations of the Baltic Sea. High-resolution spectral analysis revealed the well-defined fine structure of tidal peaks with diurnal peaks at most stations being higher than semidiurnal. At some stations (e.g., Narva, Daugava, and Wladyslawowo), high frequency radiational tidal peaks with periods multiple of the solar day (3, 4, 5, 6, and 8 cpd) were detected; the respective oscillations are supposed to be caused by seabreeze winds. Harmonic analysis of tides for individual yearly sea level series followed by vector averaging over the entire observational period was used to estimate the amplitudes and phases of 16 tidal constituents. The maximum tidal oscillations of 17–19 cm were found to be observed in the Gulf of Finland and, first of all, in Neva Bay (in the head of the gulf). Diurnal or mixed diurnal tides are predominant in almost the entire Baltic Sea. The comparison of the observed tides with those theoretically computed showed that the existing numerical models of the main tidal harmonics generally quite accurately reproduce the structure of the tides in the Baltic Sea except for some regions of the Gulf of Bothnia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.