Abstract
Abstract. Time-dependent, two layer hydraulic exchange flow is studied using an idealised shallow water model. It is found that barotropic time-dependent perturbations, representing tidal forcing, increase the baroclinic exchange flux above the steady hydraulic limit, with flux increasing monotonically with tidal amplitude (measured either by height or flux amplitude over a tidal period). Exchange flux also depends on the non-dimensional tidal period, γ, which was introduced by by Helfrich (1995). When tidal amplitude is characterised by the barotropic flux amplitude, exchange flux is a monotonic function of γ as predicted by Helfrich (1995). However, the relationship between the (imposed) free surface amplitude and flux amplitude is complicated by reflections within the channel and by the baroclinic response of the two layer system, leading to a non-monotonic relationship between the height amplitude and γ.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.