Abstract

In dynamic coastal ecosystems, environmental factors can play important roles in the biogeochemical cycle of redox-sensitive metals. This work is focused on the impact of tidal inundation, plant growth and decay on the biogeochemical cycle of redox-sensitive metals (e.g., Fe, Mn, Mo, V and U) in salt marsh wetlands. Samples were collected from the salt marsh wetlands of the Yellow River Estuary under different tidal states and growth stages of plants (Phragmites australis). Compared to the concentration of redox-sensitive metals in the river water and seawater near the study area, Fe, Mn and U were enriched in salt marsh wetland, which might become a potential source of Fe, Mn and U in the coastal sea. Tidal inundation, plant growth and decay can affect redox-sensitive metals through changes in redox conditions; the plant can also affect them directly via root absorption or plant residue decomposition, especially for Mo. Calculations of diffusion flux between sediment porewater and tidal water show that these processes can increase diffusion by at least 16.7 % or decrease it by at least 65.7 %, even reversing the direction of diffusion, which can affect the accumulation of redox-sensitive metals in salt marsh wetlands. The results showed that tidal inundation and the decay of plant residue were not conducive to the accumulation of Fe and Mn but were beneficial to the accumulation of V and U in salt marsh wetlands. The plant growth showed the opposite pattern. The accumulation of Mo in salt marsh wetlands largely depends on ingestion by plants and the decay of plant residue. This research provides a scientific basis for the budget calculation of redox-sensitive metals in salt marsh wetlands.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.