Abstract

AbstractWe investigate the tidal dissipation in Io's hypothetical fluid magma ocean using a new approach based on the solution of the 3D Navier‐Stokes equations. Our results indicate that the presence of a shallow magma ocean on top of a solid, partially molten layer leads to an order of magnitude increase in dissipation at low latitudes. Tidal heating in Io's magma ocean does not correlate with the distribution of hot spots, and is maximum for an ocean thickness of about 1 km and a viscosity of less than 104 Pa s. Due to the Coriolis effect, the k2 Love number can depend on the harmonic order. We show that the analysis of k2 may not reveal the presence of a fluid magma ocean if the ocean thickness is less than 2 km. If the fluid layer is thicker than 2 km, k20 ≈ k22/2 ≈ 0.7.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call