Abstract

The seismicity rate beneath the downglacier 85 km of ice stream C, West Antarctica, is modulated by the tide. The tide beneath the Ross Ice Shelf modifies the force balance of the ice stream basal environment enough to change the rate of basal microearthquake generation by an order of magnitude. This tidal forcing travels up the ice stream as an attenuating wave at approximately 1.6m s−1and is detectable 85km from the grounding line. We successfully model this behavior as an elastic ice stream underlain by a viscous substrate of viscosity η and thicknesshband calculate that the substrate has an apparent stiffness η/hbofO(108) Pa s m−1. This finding suggests that the conditions of the till layer at the bed of ice stream C are similar to those of ice stream B and that the reason for the recent stagnation of ice stream C is other than loss of till. We further find that the ice stream at the grounding line is more strongly affected by ice shelf processes than by the basal shear stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.