Abstract

The relation between tidal flow asymmetry and net transport of sediment in the semidiurnal regime has been extensively described. This study reveals that in the diurnal regime, the direction of long-term net bed-load transport and resulting morphologic changes is partly determined by the phase-angle relationship of O1, K1, and M2. Simple analytical formulations of time-averaged bed-load transport were derived which separate the relative contributions of tidal asymmetry from that of residual flow with tidal stirring. In this particular case, the Red River Delta in Vietnam, transports related to tidal asymmetry are larger than those induced by the monsoon currents, and are an order of magnitude larger than those associated with topographic residual flow around the delta. Tide-induced morphologic changes dominate at water depths between 10 and 25 m, of which the patterns of erosion and deposition overlap with observed bathymetric changes. Additional observed changes that occur in more shallow water cannot be explained by tidal asymmetry and are probably related to wave action and to deposition from the buoyant river plume.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.