Abstract

We investigate the dynamical evolution of hierarchical three-body systems under the effect of tides, when the ratio of the orbital semi-major axes is small and the mutual inclination is relatively large (greater than 20°). Using the quadrupolar non-restricted approximation for the gravitational interactions and the viscous linear model for tides, we derive the averaged equations of motion in a vectorial formalism which is suitable to model the long-term evolution of a large variety of exoplanetary systems in very eccentric and inclined orbits. In particular, it can be used to derive constraints for stellar spin-orbit misalignment, capture in Cassini states, tidal-Kozai migration, or damping of the mutual inclination. Because our model is valid for the non-restricted problem, it can be used to study systems of identical mass or for the outer restricted problem, such as the evolution of a planet around a binary of stars. Here, we apply our model to various situations in the HD 11964, HD 80606, and HD 98800 systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.