Abstract
We perform numerical simulations to investigate tidal evolution of two single-planet systems, that is, WASP-50 and GJ 1214 and a two-planet system CoRoT-7. The results of orbital evolution show that tidal decay and circularization may play a significant role in shaping their final orbits, which is related to the initial orbital data in the simulations. For GJ 1214 system, different cases of initial eccentricity are also considered as only an upper limit of its eccentricity (0.27) is shown, and the outcome suggests a possible maximum initial eccentricity (0.4) in the adopted dynamical model. Moreover, additional runs with alternative values of dissipation factor $Q^\prime_1$ are carried out to explore tidal evolution for GJ 1214b, and these results further indicate that the real $Q^\prime_1$ of GJ 1214b may be much larger than its typical value, which may reasonably suggest that GJ 1214b bears a present-day larger eccentricity, undergoing tidal circularization at a slow rate. For the CoRoT-7 system, tidal forces make two planets migrating towards their host star as well as producing tidal circularization, and in this process tidal effects and mutual gravitational interactions are coupled with each other. Various scenarios of the initial eccentricity of the outer planet have also been done to investigate final planetary configuration. Tidal decay arising from stellar tides may still work for each system as the eccentricity decreases to zero, and this is in association with the remaining lifetime of each planet used to predict its future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.