Abstract

We examine the gyration motion of a charged particle, viewed from a reference observer falling along the Z axis into a Schwarzschild black hole. It is assumed that the magnetic field is constant and uniform along the Z axis, and that the particle has a circular orbit in the X–Y plane far from the gravitational source. When the particle as well as the reference observer approaches the black hole, its orbit is disrupted by the tidal force. The final plunging velocity increases in the non-relativistic case, but decreases if the initial circular velocity exceeds a critical value of ∼0.7c. This toy model suggests that the disruption of a rapidly rotating star due to a velocity-dependent tidal force may be quite different from that of a non-relativistic star. The model also suggests that the collapse of the orbit after the disruption is slow in general, so that the particle subsequently escapes outside the valid Fermi coordinates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.