Abstract

AbstractTidal fluctuations along the salt water boundary of a sandy beach affect the magnitude, location, timing, and salinity of both subaerial and submarine ground water discharge. Detailed studies of shoreline discharge from an unconfined aquifer at two sites in an embayment on the Cape Cod, Massachusetts, coastline provide insight into the highly dynamic spatial and temporal nature of discharge along sandy beaches affected by the tide. The constantly moving tidal boundary over a sloping beach results in a shoreline‐perpendicular discharge zone of 10 to 20 m, with ∼35% to 55% of the discharge being submarine discharge. The distribution of fresh ground water through a beach face varies greatly, depending primarily on the tidal cycle and range, the heterogeneous characteristics of the beach sediments, and the beach geometry. The estimated relative volume of discharge varies temporally with tidal fluctuations, with the greatest discharge occurring during early to mid ebbing tide and location of greatest estimated discharge moving seaward during ebbing tide. This is determined using net hydraulic head calculations in monitoring wells set in a shoreline‐perpendicular transect in the beach. The salinity of discharge varies temporally from near fresh water values of 1 part per thousand (ppt) to near coastal salt water values of 30 ppt, being saltiest at the start of discharge as the tide ebbs and freshest during a low tide period of ∼2 h. Of the discharge volume, ∼65% to 85% is estimated to be from salt water that infiltrates during high tide episodes. This study highlights the complexity of the dynamic coastal ground water discharge phenomenon and provides insight into the hydraulic mechanisms involved. While there is a general pattern to sandy beach discharge, comparison of results from beaches studied at Cape Cod indicates that the temporal and spatial details of the discharge is very site‐specific.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.