Abstract

To evaluate the effect of the tidal cycle on the pore water nitrate dynamics in intertidal sediment, concentrations of inorganic nitrogen in water and sediment were monitored during tidal cycles in the mud flat of Tama Estuary, Japan. During submergence, nitrate concentration was highest in the overlying water and decreased monotonically with increasing depth in the sediment, suggesting that the primary source of nitrate in the sediment was nitrate transported from the overlying water. Pore water nitrate decreased remarkably during the initial 3–4 hours after the onset of exposure. Thereafter, it was constant or slightly increased until tidal flooding.In situ accumulation of nitrate at the end of exposure, however, did not exceed the nitrate concentrations in the overlying water. The inhibition of nitrate reduction and the stimulation of nitrification would explain the change of nitrate concentration, both consistent with the input of oxygen into the sediment following a 10 mm drop of the water table. In Tama Estuary sediments, the effect of the tidal cycle on the removal of combined nitrogen is rather negative, because high nitrate concentrations in the overlying water canceled the positive effect of nitrate accumulation by nitrification during exposure, while tidal oxygen intrusion have an inhibitory effection sedimentary denitrification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.