Abstract
We study how stably stratified or semi-convective layers alter the tidal dissipation rates associated with the generation of internal waves in planetary interiors. We consider if these layers could contribute to the high rates of tidal dissipation observed for Jupiter and Saturn in our solar system. We use an idealized global spherical Boussinesq model to study the influence of stable stratification and semi-convective layers on tidal dissipation rates. We carry out analytical and numerical calculations considering realistic tidal forcing and measure how the viscous and thermal dissipation rates depend on the parameters relating to the internal stratification profile. We find that the strongly frequency-dependent tidal dissipation rate is highly dependent on the parameters relating to the stable stratification, with strong resonant peaks that align with the internal modes of the system. The locations and sizes of these resonances depend on the form and parameters of the stratification, which we explore both analytically and numerically. Our results suggest that stable stratification can significantly enhance the tidal dissipation in particular frequency ranges. Analytical calculations in the low-frequency regime give us scaling laws for the key parameters, including the tidal quality factor due to internal gravity waves. Stably stratified layers can significantly contribute to tidal dissipation in solar and extrasolar giant planets, and we estimate substantial tidal evolution for hot Neptunes. Further investigation is needed to robustly quantify the significance of the contribution in realistic interior models, and to consider the contribution of inertial waves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.