Abstract

ABSTRACT The transit method is a promising means of detecting exomoons, but few candidates have been identified. For planets close to their stars, the dynamical interaction between a satellite’s orbit and the star must be important in their evolution. Satellites beyond synchronous orbit spiral out due to the tide raised on their planet, and it has been assumed that they would likely escape the Hill sphere. Here we follow the evolution with a three-body code that accounts for tidal dissipation within both the planet and the satellite. We show that tidal dissipation in satellites often keeps them bound to their planet, making exomoons more observable than previously thought. The probability of escape depends on the ratio of tidal quality factors of the planet and satellite; when this ratio exceeds 0.5, escape is usually avoided. Instead, the satellite moves to an equilibrium in which the spin angular momentum of the planet is not transferred into the orbit of the satellite, but is transferred into the orbit of the planet itself. While the planet continues spinning faster than the satellite orbits, the satellite maintains a semi-major axis of approximately 0.41 Hill radii. These states are accompanied with modest satellite eccentricity near 0.1 and are found to be stable over long time-scales.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.