Abstract

We present numerical relativity results of tidal disruptions of white dwarfs from ultra-close encounters with a spinning, intermediate mass black hole. These encounters require a full general relativistic treatment of gravity. We show that the disruption process and prompt accretion of the debris strongly depend on the magnitude and orientation of the black hole spin. However, the late-time accretion onto the black hole follows the same decay, $\dot{M}$ ~ t^{-5/3}, estimated from Newtonian gravity disruption studies. We compute the spectrum of the disk formed from the fallback material using a slim disk model. The disk spectrum peaks in the soft X-rays and sustains Eddington luminosity for 1-3 yrs after the disruption. For arbitrary black hole spin orientations, the disrupted material is scattered away from the orbital plane by relativistic frame dragging, which often leads to obscuration of the inner fallback disk by the outflowing debris. The disruption events also yield bursts of gravitational radiation with characteristic frequencies of ~3.2 Hz and strain amplitudes of ~10^{-18} for galactic intermediate mass black holes. The optimistic rate of considered ultra-close disruptions is consistent with no sources found in ROSAT all-sky survey. The future missions like Wide-Field X-ray Telescope (WFXT) could observe dozens of events.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.