Abstract

The neutron star tidal deformability is a critical parameter which determines the pre-merger gravitational-wave signal in a neutron star merger. In this article, we show how neutron star tidal deformabilities behave in the presence of one or two sharp phase transition(s). We characterize how the tidal deformability changes when the properties of these phase transitions are modified in dense matter equation of state (EoS). Sharp phase transitions lead to the smallest possible tidal deformabilities and also induce discontinuities in the relation between tidal deformability and gravitational mass. These results are qualitatively unmodified by a modest softening of the phase transition. Finally, we test two universal relations involving the tidal deformability and show that their accuracy is limited by sharp phase transitions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call