Abstract

Gravitational waves from compact binary coalescences are valuable for testing theories of gravity in the strong field regime. By measuring neutron star tidal deformability using gravitational waves from binary neutron stars, stringent constraints were placed on the equation of state of matter at extreme densities. Tidal Love numbers in alternative theories of gravity may differ significantly from their general relativistic counterparts. Understanding exactly how the tidal Love numbers change will enable scientists to untangle physics beyond general relativity from the uncertainty in the equation of state measurement. In this work, we explicitly calculate the fully relativistic l ≥ 2 tidal Love numbers for neutron stars in scalar-tensor theories of gravitation. We use several realistic equations of state to explore how the mass, radius, and tidal deformability relations differ from those of general relativity. We find that tidal Love numbers and tidal deformabilities can differ significantly from those in general relativity in certain regimes. The electric tidal deformability can differ by ∼200%, and the magnetic tidal deformability differs by ∼300%. These deviations occur at large compactnesses (C = M/r ≳ 0.2) and vary slightly depending on the equation of state. This difference suggests that using the tidal Love numbers from general relativity could lead to significant errors in tests of general relativity using the gravitational waves from binary neutron star and neutron star black hole mergers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call