Abstract

The existence of high-spatial resolution imagery that are now available free by Planet Labs opens up opportunities in detailed scale mapping research, both as basic data and as reference data for geometry accuracy assessment. However, the use of several satellite sensors types with different recording times is the biggest obstacle in the use of high spatial resolution imagery as reference data because the shoreline instantaneous imaging at the data acquisition time does not consider the spatial and temporal variability of the shoreline boundaries. The purpose of this study was to analyze the effect of tidal correction on shoreline mapping in Jepara Regency using Landsat 8 OLI imagery in 2018.The effect of tidal correction analysis is done by comparing the position of the shoreline corrected by tides with the shoreline that is not corrected for tides. The influence of tidal correction is marked by differences in the position of the two shorelines. Shoreline shift calculation when there is a difference in tidal conditions between the test shoreline and the reference shoreline is carried out using the theory of right triangle (also called as one-line shift method).Based on the analysis of tidal correction effects, it is known that the shift in shoreline position after tidal correction varies from 0.21 m to 1.8 m, the value does not exceed one pixel of the PlanetScope image (3 m) so that tidal correction does not needs to be done because the effect is insignificant and undetectable on PlanetScope imagery.
 Keywords: tidal correction, shoreline, Planetscope, Landsat 8 OLI, Jepara

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call