Abstract
Tidal theory predicts that the orbits of close extrasolar giant planets will circularize on timescales that can be comparable to the ages of those systems. Additionally, planets that are close enough and massive enough can spin up their central stars. Since the eccentricities of extrasolar planet orbits are determined by the radial velocity technique and since stellar rotation rates are observed, or at least derived, limits on the masses of close extrasolar planets can be placed. We find upper limits on the masses of eight extrasolar planets, including limiting the masses of υ And b, HD 75289b, HD 187123b, and 51 Peg b to less than 1.48, 1.21, 0.59, and 0.51 Jupiter masses, respectively. There is a contradiction in the constrained mass of HD 217107b, in that its eccentricity is apparently too high. This anomalously high eccentricity could be real and caused by other planets in that system; or it could be an artifact of fitting a one-orbit solution to multiplanet data. The tidal limits placed on all these extrasolar planets are only as good as the knowledge of the stellar parameters (age, rotation period), which in some cases is not very good; better detailed knowledge of stars hosting planets will be necessary.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.