Abstract
The most likely origin of hypervelocity stars (HVSs) is the tidal disruption of a binary star by the supermassive black hole (MBH) in the Galactic Centre (GC). However, HE0437-5439, a $9$ M$_\odot$ B-type main-sequence star moving with a heliocentric radial velocity of about $720$ km s$^{-1}$ at a distance of $\sim 60$ kpc, and the recent discovered hypervelocity binary candidate (HVB), traveling at $\sim 570$ km s$^{-1}$, challenge this standard scenario. Recently, Fragione & Gualandris (2018) have demonstrated that the tidal breakup of a triple star leads to an insufficient rate. Observations show that quadruple stars made up of two binaries orbiting their common center of mass (the so-called 2+2 quadruples) are $\approx 4\%$ of the stars in the solar neighborhood. Although rarer than triples, 2+2 quadruple stars may have a role in ejecting HVBs as due to their larger energy reservoir. We present a numerical study of 2+2 quadruple disruptions by the MBH in the GC and find that the production of HVBs has a probability $\lesssim 2-4\%$, which translates into an ejection rate of $\lesssim 1$ Gyr$^{-1}$, comparable to the triple disruption scenario. Given the low ejection rate, we suggest that alternative mechanisms are responsible for the origin of HVBs, as the ejection from the interaction of a young star cluster with the MBH in the GC and the origin in the Large Magellanic Cloud.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.