Abstract

Developing non-noble metal oxygen reduction reaction (ORR) electrocatalysts with high performance, excellent stability, and low-cost is crucial for the industrialization of fuel cells. Herein, trace level Co modified 3D hybrid titanium carbonitride MXene and boron-carbon-nitrogen nanotubes catalyst (TiCN–BCN–Co) is fabricated by spray-lyophilization and high-temperature pyrolysis. This strategy not only avoids the oxidation of Ti3C2Tx MXene, but also introduces nitrogen atoms into the titanium carbide lattice to form a more electrocatalytically active TiCN crystal phase. The obtained TiCN–BCN–Co exhibits superior ORR catalytic activity with a positive half-wave potential of 0.83 V vs. RHE and outperforms commercial Pt/C in terms of stability and methanol tolerance. Impressively, the Zn-air battery with TiCN–BCN–Co cathode achieves a superior specific capacity of 791 mAh g−1 and long-term stability of 200 h.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call