Abstract

Ticks and the diseases they transmit are of huge veterinary, medical and economic importance worldwide. Control of ticks attacking livestock and companion animals is achieved primarily by application of chemical or plant-based acaricides. However, ticks can rapidly develop resistance to any new product brought onto the market, necessitating an ongoing search for novel active compounds and alternative approaches to tick control. Many aspects of tick and tick-borne pathogen research have been facilitated by the application of continuous cell lines derived from some of the most economically important tick species. These include cell lines derived from acaricide-susceptible and resistant ticks, cell sub-lines with in vitro-generated acaricide resistance, and genetically modified tick cells. Although not a replacement for the whole organism, tick cell lines enable studies at the cellular and molecular level and provide a more accessible, more ethical and less expensive in vitro alternative to in vivo tick feeding experiments. Here we review the role played by tick cell lines in studies on acaricide resistance, mode-of-action of acaricides, identification of potential novel control targets through better understanding of tick metabolism, and anti-tick vaccine development, that may lead to new approaches to control ticks and tick-borne diseases.

Highlights

  • Tick cell lines play a major role as essential tools in in vitro studies to examine and assess the impact of chemical molecules and vaccines against ticks and tick-borne pathogens (TBPs), as well as to investigate the mechanisms of resistance and tick metabolism which can lead to the development of novel approaches to control ticks and TBPs (Bell-Sakyi et al, 2018)

  • Koh-Tan et al (2016) investigated the expression of the β-adrenergic octopamine receptor gene, associated with amitraz resistance, and the ATP-binding cassette B10 (ABCB10) gene, associated with macrocyclic lactone resistance, in tick cell lines derived from R. microplus, including BmVIII-SCC, BME/CTVM2, BME/CTVM5 and BME/CTVM6, Rhipicephalus appendiculatus, Rhipicephalus sanguineus, and Rhipicephalus evertsi (Table 1)

  • De Abreu et al (2013) investigated the role of protein kinase B (AKT) and glycogen synthase kinase 3 (GSK3) in glycogen metabolism and cell viability using the R. microplus cell line BME26, and the results revealed an antagonistic role for AKT and GSK3

Read more

Summary

Introduction

Tick cell lines play a major role as essential tools in in vitro studies to examine and assess the impact of chemical molecules and vaccines against ticks and TBPs, as well as to investigate the mechanisms of resistance and tick metabolism which can lead to the development of novel approaches to control ticks and TBPs (Bell-Sakyi et al, 2018). Cossio-Bayugar et al (2002b) generated three organophosphateresistant R. microplus cell sub-lines by exposing the R. microplus BmVIII-SCC cell line (Holman, 1981), originally derived from embryos of acaricide-susceptible ticks, to gradually increasing concentrations of the organophosphate compound coumaphos (Table 2).

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call