Abstract

BackgroundHunting constitutes an important industry in Europe. However, data on the prevalence of vector-borne bacteria in large game animal species are lacking from several countries. Blood or spleen samples (239 and 270, respectively) were taken from red, fallow and roe deer, as well as from water buffaloes, mouflons and wild boars in Hungary, followed by DNA extraction and molecular analyses for Anaplasma phagocytophilum, haemoplasmas and rickettsiae.ResultsBased on blood samples, the prevalence rate of A. phagocytophilum infection was significantly higher in red deer (97.9%) than in fallow deer (72.7%) and roe deer (60%), and in all these compared to mouflons (6.3%). In addition, 39.2% of the spleen samples from wild boars were PCR positive for A. phagocytophilum, but none of the buffalos. Based on blood samples, the prevalence rates of both Mycoplasma wenyonii (Mw) and ‘Candidatus M. haemobos’ (CMh) infections were significantly higher in buffaloes (Mw: 91.2%; CMh: 73.3%) than in red deer (Mw: 64.6%; CMh: 45.8%), and in both of them compared to fallow deer (Mw: 30.3%; CMh: 9.1%) and roe deer (Mw: 20%; CMh: 1.5%). The prevalence of Mw and CMh infection significantly correlated with the body sizes of these hosts. Furthermore, Mw was significantly more prevalent than CMh in buffaloes, red and roe deer. Mycoplasma ovis was detected in mouflons, M. suis in wild boars, R. helvetica in one fallow deer and one mouflon, and an unidentified Rickettsia sp. in a fallow deer.ConclusionsForest-dwelling game animal species were found to be important carriers of A. phagocytophilum. In contrast, animals grazing grassland (i.e. buffaloes) were less likely to get infected with this Ixodes ricinus-borne pathogen. Water buffaloes, deer species, mouflons and wild boars harbored haemoplasmas that may affect domestic ungulates. Evaluated animals with larger body size had significantly higher prevalence of infection with haemoplasmas compared to smaller deer species. The above host species rarely carried rickettsiae.

Highlights

  • Hunting constitutes an important industry in Europe

  • Concerning blood samples of game animals (Table 2), the prevalence rate of A. phagocytophilum infection was significantly higher in red deer (97.9%, confidence intervals (CI): 88.9–100%) than in fallow deer (72.7%, CI: 54.5–86.7%) and roe deer (60%, CI: 47.1–72%) (P = 0.001), and in all these compared to mouflons (6.3%, CI: 0.2–30.2%) (P = 0.0001)

  • Based on blood samples (Table 2), the prevalence rates of both Mycoplasma wenyonii (Mw) and ‘Candidatus M. haemobos’ (CMh) infections were significantly higher in buffaloes (Mw: 91.2%, CI: 81.6–97.2%; CMh: 73.3%, CI: 60.3– 83.9%) than in red deer (Mw: 64.6%, CI: 49.5–77.8%; CMh: 45.8%, CI: 31.4–60.8%) (P = 0.0007 and 0.005, respectively); and in red deer compared to fallow deer (Mw: 30.3%, CI: 15.6–48.7%; CMh: 9.1%, CI: 1.9– 24.3%) (P = 0.003 and 0.0005, respectively) and roe deer (Mw: 20%, CI: 11.1–31.8%; CMh: 1.5%, CI: 0.1– 8.3%) (P < 0.0001)

Read more

Summary

Introduction

Hunting constitutes an important industry in Europe. data on the prevalence of vector-borne bacteria in large game animal species are lacking from several countries. As exemplified by red deer (Cervus elaphus), roe deer (Capreolus capreolus) and wild boars (Sus scrofa), have increasing populations in Europe [1,2,3]. Adding to their ecological and economical significance, molecular screening of pathogens they may harbor deserved special attention during the past decades. There are various means of connectivity between game and domestic animals These include hunting and offal waste disposal, the growing interface between urban and natural habitats, as well as blood-sucking arthropod vectors that may transmit disease agents between wild-living ungulates and livestock. The latter can happen even when they are more distantly separated

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call